RoHS

Technical data

- Special Neoprene-flat cable adapted to DIN VDE 0250 part 809
- Temperature range flexing $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
fixed installation $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
- Nominal voltage $U_{0} / \mathrm{U} 300 / 500 \mathrm{~V}$
- Test voltage 3000 V
- Minimum bending radius 10x cable thickness
- Radiation resistance
up to $50 \times 10^{6} \mathrm{cJ} / \mathrm{kg}$ (up to 50 Mrad)

Cable structure

- Copper-conductor bare or tinned to DIN VDE 0295, BS 6360, IEC 60228
- Conductor construcktion 35-120 mm^{2} class 5: fine-wire $1,5-25 \mathrm{~mm}^{2}$ class 6 col.4: extra-fine-wire
- Special rubber core insulation
- Core identification to DIN VDE 0293
- up to 5 cores coloured
- from 7 cores, black with continuous white numbering
- Cores laying parallel
- GN-YE conductor
- Outer sheath of special rubber 5GM3, to DIN VDE 0207 part 21
- Sheath colour black

Properties

- Special rubber outer sheath, cold-resistant
- Extensively oil resistant,
oil-/chemical resistance
see table Technical Informations
- Extremely small bending radius
- High flexibility
- Minimum waste of space
- Packeting possibility
- Outdoor application

Tests

- Behaviour in fire
to DIN VDE 0482-332-1-2
DIN EN 60332-2-1, IEC 60332-1 (equivalent DIN VDE 0472 part 804 test method B)

Note

- $\mathrm{G}=$ with green-yellow conductor
- Part no. 28007 and 28013 (6x4).
- AWG sizes are approximate equivalent values. The actual cross-section is in mm^{2}.

Application

Neoprene type of flat cables are used mainly as trailing cable for crane installations, floor conveyer systems and shelf control units. These cables are also available for export with UL-approval on request.

Installation notes

Cables reels with flat cables must be transported in standing position on the flange. A bending flexibility can be achieved on a plane surface. For this purpose, the corresponding fitting instructions should be followed.

- Put the cable trolly on the guiding rail or upon carrier beam and push them together at the starting point. The distance between the bedding surface of two cable trollys must be wider than the double thickness of a cable-packet.
- During the packeting performance, it must be started with the smaller cross-section which lays on the bedding surface and will be builded successively so that the biggest cross-section is laying on the top.
- Further, be careful of a symmetrical load distribution.
- In case of multicore flat cables with small cross-section, smaller than $2,5 \mathrm{~mm}^{2}$, is very critical due to its low tensile stress. In such case, you should add 10% reserve wire for calculation.
C $\epsilon=$ The product is conformed with the EC Low-Voltage Directive 2006/95/EC.

Part no .	No.cores \mathbf{x} cross-sec. $\mathbf{m m}^{2}$		Outer dimension approx. mm	Cop. weight kg / km	Weight approx. $\mathbf{k g} / \mathbf{k m}$	AWG-No.
28001	4 G 1,5		5,9 $\times 16,2$	58,0	234,0	16
28002	5 G 1,5		$5,9 \times 23,7$	72,0	304,0	16
28003	7 G 1,5		5,9 $\times 30,5$	101,0	391,0	16
28004	8 G 1,5		$5,9 \times 34,0$	115,0	441,0	16
28005	10 G 1,5		$5,9 \times 43,5$	144,0	460,0	16
28006	12 G 1,5		6,5 $\times 50,4$	173,0	646,0	16
28007	24 G 1,5	(6×4)	13,0 $\times 56,0$	346,0	1290,0	16
28008	4 G 2,5		7,2 $\times 19,6$	96,0	316,0	14
28009	5 G 2,5		7,2 $\times 27,8$	120,0	391,0	14
28010	7 G 2,5		$7,2 \times 36,1$	168,0	533,0	14
28011	8 G 2,5		7,2 \times 40,2	192,0	602,0	14
28012	$12 \mathrm{G} 2,5$		$7,8 \times 59,4$	288,0	890,0	14
28013	24 G 2,5	(6×4)	$15,5 \times 66,8$	576,0	1480,0	14
28014	4 G 4		8,8 $\times 24,2$	154,0	506,0	12
28015	5 G 4		8,8 $\times 33,4$	192,0	621,0	12
28016	7 G 4		$8,8 \times 42,5$	269,0	851,0	12
28017	4 G 6		9,6 $\times 27,4$	230,0	661,0	10
28018	5 G 6		9,6 $\times 37,4$	288,0	740,0	10
28019	7 G 6		9,6 $\times 47,2$	403,0	1004,0	10
28020	4 G 10		$10,4 \times 30,8$	384,0	1027,0	8
28021	5 G 10		10,4 $\times 41,6$	480,0	1171,0	8

Part no .	No.cores \mathbf{x} cross-sec. $\mathbf{m m}^{2}$	Outer dimension approx. mm	Cop. weight kg/ km	Weight approx. $\mathbf{k g} / \mathbf{k m}$	AWG-No.
28022	4 G 16	11,6 x 35,6	614,0	1430,0	6
28023	5 G 16	$12,2 \times 48,2$	768,0	1590,0	6
28024	4 G 25	$14,1 \times 45,8$	960,0	1890,0	4
28025	5 G 25	$14,7 \times 58,3$	1200,0	2215,0	4
28026	7 G 25	$15,3 \times 78,7$	1680,0	3000,0	4
28027	4 G 35	$15,8 \times 50,8$	1344,0	2460,0	2
28028	5 G 35	$16,4 \times 64,4$	1680,0	2880,0	2
28029	7 G 35	$16,4 \times 86,4$	2352,0	4100,0	2
28030	4 G 50	$18,6 \times 60,2$	1920,0	3385,0	1
28031	4 G 70	$21,0 \times 68,0$	2688,0	4480,0	2/0
28032	4 G 95	$24,1 \times 78,6$	3648,0	5990,0	3/0
28033	4 G 120	$25,5 \times 84,2$	4608,0	7240,0	4/0

[^0]
[^0]: Dimensions and specifications may be changed without prior notice. (RJ01)

