## RoHS

## Technical data

- Control cable of special-PVC to UL AWM Style 10012 (core insulation) Style 2587 and CSA
- Temperature range
flexing $-5^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
fixed installation $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
- Nominal voltage

UL/CSA 600 V

- Test voltage 4000 V
- Breakdown voltage min. 8000 V
- Insulation resistance
min 20 MOhm x km
- Minimum bending radius
flexing 7,5x cable Ø
fixed installation 4 x cable $\varnothing$
- Radiation resistance
up to $80 \times 10^{6} \mathrm{cJ} / \mathrm{kg}$ (up to 80 Mrad )


## Cable structure

- Bare copper, extra fine wire conductors, to DIN VDE 0295 cl. 6 col. 4, BS 6360 cl. 6 and IEC 60228 cl. 6
- Core insulation special PVC compound type YI8 to DIN VDE 0207 part 4 and class 43 acc. to UL-Std. 1581
- Core identification to DIN VDE 0293 red cores with continuous white numbering
- GN-YE conductor in the outer layer
- Cores stranded in layers with optimal lay-length
- Wrapping with fleece over each layer
- Outer sheath of special PVC compound type YM5 to DIN VDE 0207 part 5, UL-Style 2587 and CSAC22.2 No 210
- Sheath colour black (RAL 9005)
- with meter marking


## Properties

- The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers


## Tests

- PVC self-extinguishing and flame retardant acc. to DIN VDE 0482-332-1-2, DIN EN 60332-1-2/IEC 60332-1 (equivalent DIN VDE 0472 part 804 test method B), UL VW-1, CSA FT1
- UV-resistant


## Note

- $G=$ with green-yellow conductor
- AWG sizes are approximate equivalent values. The actual cross-section is in $\mathrm{mm}^{2}$.
- screened analogue type:

JZ-602 RC -CY, confer page 427

## Application

For use in dry, damp and wet rooms with free movement without tensile stress or forced movements as highly flexible PVC control cable suitable for frequent lifting and bending stress in the machinery and tooling, robot technology and permanently moving machine parts. Convincingly proved in the standard use of drag chains. Interesting for the export-oriented machinery plant. For applications that go beyond standard solutions (e. g. composting facilities or high shelf conveyors with extremely high speed, etc.) we recommend you to our specially developed inquiry sheet for energy guiding systems, further technical details see selection table: Conductors for cable drag chains in the opening credits. For use in cable drag chains please note installation instruction.
$\mathbf{R C}=$ Robotics Cable
C $\epsilon=$ The product is conformed with the EC Low-Voltage Directive 2006/95/EC.

| Part no . | No.cores x cross-sec. $\mathbf{m m}^{\mathbf{2}}$ | AWG-No. | Outer Ø app. mm | Cop. weight $\mathbf{k g} / \mathbf{k m}$ | Weight app. kg/ km |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 89900 | 3 G 0,5 | 20 | 6,0 | 14,0 | 58,0 |
| 89901 | 4 G 0,5 | 20 | 6,5 | 19,0 | 69,0 |
| 89902 | 5 G 0,5 | 20 | 7,1 | 24,0 | 84,0 |
| 89903 | $7 \mathrm{G} \mathrm{0,5}$ | 20 | 8,2 | 34,0 | 123,0 |
| 89904 | 9 G 0,5 | 20 | 10,0 | 43,2 | 177,0 |
| 89905 | 12 G 0,5 | 20 | 10,5 | 58,2 | 192,0 |
| 89906 | 18 G 0,5 | 20 | 12,5 | 86,0 | 256,0 |
| 89907 | 25 G 0,5 | 20 | 15,2 | 120,0 | 358,0 |
| 89908 | 34 G 0,5 | 20 | 17,1 | 163,0 | 487,0 |
| 89909 | 3 G 1 | 18 | 6,6 | 23,8 | 88,0 |
| 89910 | 4 G 1 | 18 | 7,1 | 31,7 | 101,0 |
| 89911 | 5 G 1 | 18 | 7,8 | 39,6 | 126,0 |
| 89912 | 7 G 1 | 18 | 9,2 | 55,4 | 145,0 |
| 89913 | 9 G 1 | 18 | 11,0 | 71,2 | 168,0 |
| 89914 | 12 G 1 | 18 | 11,5 | 95,0 | 260,0 |
| 89915 | 15 G 1 | 18 | 13,2 | 119,0 | 300,0 |
| 89916 | 18 G 1 | 18 | 14,0 | 142,4 | 360,0 |
| 89917 | 25 G 1 | 18 | 17,2 | 197,8 | 640,0 |
| 89918 | 34 G 1 | 18 | 19,1 | 269,0 | 730,0 |
| 89919 | 3 G 1,5 | 16 | 7,4 | 44,0 | 94,0 |
| 89920 | 4 G 1,5 | 16 | 8,0 | 58,0 | 117,0 |
| 89921 | 5 G 1, 5 | 16 | 8,8 | 72,0 | 140,0 |
| 89922 | 7 G 1,5 | 16 | 10,8 | 101,0 | 186,0 |
| 89923 | 9 G 1,5 | 16 | 12,8 | 129,7 | 244,0 |
| 89924 | $12 \mathrm{G} \mathrm{1,5}$ | 16 | 13,5 | 173,0 | 319,0 |
| 89925 | 18 G 1,5 | 16 | 16,0 | 260,0 | 451,0 |


| Part no . | No.cores $\mathbf{x}$ cross-sec. $\mathbf{m m}^{2}$ | AWG-No. | Outer $\varnothing$ app. mm | Cop. weight $\mathbf{k g} / \mathbf{~ k m}$ | Weight app. kg / km |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 89926 | 25 G 1,5 | 16 | 19,8 | 360,0 | 625,0 |
| 89927 | 34 G 1,5 | 16 | 22,4 | 490,0 | 840,0 |
| 89932 | $3 \mathrm{G} 2,5$ | 14 | 8,9 | 72,0 | 150,0 |
| 89928 | 4 G 2,5 | 14 | 10,1 | 96,0 | 185,0 |
| 89933 | 5 G 2,5 | 14 | 11,3 | 120,0 | 242,0 |
| 89929 | $7 \mathrm{G} \mathrm{2,5}$ | 14 | 13,6 | 168,0 | 293,0 |
| 89934 | $12 \mathrm{G} 2,5$ | 14 | 16,8 | 288,0 | 498,0 |
| 89935 | 3 G 4 | 12 | 10,9 | 115,0 | 231,0 |
| 89930 | 4 G 4 | 12 | 12,4 | 154,0 | 298,0 |
| 89936 | 5 G 4 | 12 | 13,8 | 192,0 | 370,0 |
| 89931 | 7 G 4 | 12 | 16,6 | 269,0 | 460,0 |
| 89937 | 4 G 6 | 10 | 14,6 | 231,0 | 430,0 |
| 89938 | 4 G 10 | 8 | 18,2 | 384,0 | 720,0 |
| 89939 | 4 G 16 | 6 | 22,6 | 615,0 | 1060,0 |
| 89940 | 4 G 25 | 4 | 26,5 | 960,0 | 1590,0 |
| 89941 | 4 G 35 | 2 | 30,8 | 1344,0 | 2105,0 |

[^0]
[^0]:    Dimensions and specifications may be changed without prior notice. (RNO5)

